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ACCUMULATION OF PCBs. MERCURY. AND CADMIUM BY NEREIS VIRENS,

MERCENARIA MERCENARIA, AND PALAEM4ONETES PUGIO

FROM CONTAMINATED HARBOR SEDIMENTS

I. INTRODUCTION

Dredging and the subsequent disposal of dredged material are

necessary for maintaining the waterways and harbors of this country.

In 1980, approximately 45 million cubic meters of dredged material was

disposed of in the coastal waters of the United States (Letzkus, 1982).

To ensure that disposal operations are conducted with a minimal degree

of environmental risk, dredged material destined for ocean disposal

must be evaluated on the basis of criteria established by the U.S.

Environmental Protection Agency (Section 103, Public Law 92-532).

Disposal evaluations currently utilize toxicity tests (bioassays)

to determine the biological availability of contaminants associated

with dredged sediments. Test procedures (U.S. Environmental Protection

Agency/Corps of Engineers (EPA/CE), 1977) consist of a 10-day acute

phase, followed by bioaccumulation analyses (whcle-body residues) for

those organisms that survive the 10-day exposure. Laboratory results

from tests conducted on a variety of New York Harbor bottom sediments

(Suszkowski and Mansky, 1981) indicate that acute toxicity is rarely

encountered; however, bioaccumuldtion of certain xenobiotics (i.e.,

polychlorinated biphenyls [PCBs], mercury [Hg], cadmium [Cd], and

polycyclic aromatic hydrocarbons [PAHs]) by test organisms has been

observed. Thus, a major problem in evaluating disposal options is the
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difficulty in relating short-term laboratory results to actual

conditions at the disposal site.

Biota indigenous to the disposal site will eventually attain a

steady-state or equilibrium condition with contaminants available from

deposited dredged material. Therefore, if a 10-day exposure period is

to have predictive valuE, its relationship to long-te! 1 exposure must

be evaluated.

The objective of this study was to compare whole-body residues

that exist after 10 days of exposure with steady-state concentrations

in three routinely used test species (Nereis virens, Mercenaria

mercenaria,aroJ Palaemonetes 212i2) and three contaminants (PCBs, Hg,

and Cd) coummonly associated with bottom sediments of urbanized and

industrialized areas. An additional objective was to examine the

relationships of organic content, particle sizeand sediment moisture

content to bioaccumulation potential.

II. MATERIALS AND METHODS

A. Sediments

Test sediments collected from four sites in New York Harbor were

selected to represent a range in concentrations of PCBs, Hg, Cd,

organic content, particle size, and moisture content. Fifty liters of

each sediment type (designated A through D) were collected by the New

York District, U.S. Army Corps of Engineers, and shipped to the Gulf

Breeze Laboratory by refrigerated truck (40 C). Prior to testing (July

through November 1981), sediments were sieved (5-ram mesh) to remove
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large debris and macrofauna, thoroughly mixed to ensure uniformity, and

analyzed for the three contaminants and sediment parameters (Holme and

McIntyre, 1971). In addition, a standard elutriate test (EPA/CE, 1981)

for PCBs was conducted for each sediment type. Sediments were stored

at 4° C and tested within two weeks of acquisition.

B. Organisms

Species selected for testing have been used routinely for dredged

material evaluation in the northeast and are representative of the

infaunal, epibenthic, and water-column habitats. Sandworms (N.

virens) were obtained from the Maine Bait Co., New Castle, Maine, and

hard clams (M. mercenaria) from the Blue Point Hatchery, Long Island,

New York; grass shrimp (P. 222i2) were collected in northwest Florida.

All animals were acclimated to test conditions in the laboratory for at

least one week prior to testing. Subsets (N=3) of each organism were

analyzed for PCBs, Hg, and Cd. Grass shrimp were pooled to provide at

least 1 g of tissue for each analysis.

C. Exposure Systems

Organisms were exposed to contaminated sediments by the method of

Rubinstein et al. (1980) (Fig. 1). Forty-liter aquaria (50 an x 25 cm

x 30 cn) were used as test vessels (three replicates per sediment

type). Unfiltered seawater (30 c/oo salinity ± 20/oo) was pumped

from Santa Rosa Sound to a headbox in the laboratory. Temperature was

maintained at 220 + 10 C by water chiller units (Mini-Cool 01-100 )
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mounted in the headbox and water bath. Water flowed front the headbox

to a trough which delivered seawater at a rate of 27 1 per hour to the

individual aquaria. Flow to the aquaria was adjusted by raising or

lowering individual standpipes in the trough. Effluent water drained

from the aquaria through openings 25 cm above the substrate on the side

of the aquaria opposite the incoming water and was routed through an

in-line sediment trap to a holding pond. A flow rate of 27 x per hour

per aquarium was selected to meet th., nutritional requirements of M.

mercenaria (1 x per hour per individual) and is in excess of minimum

recommended exchange rates (Amneuran Public Health Association, 1981).

Test sediments (3.6 z) were poured uni,'ormly over the bottom of

the designated aquaria. Several hours were allowed for the sediment to

settle before the seawater flow was resumed, leaving approximately a

3.5-cm layer of test material in each aquarium. A control aquarium,

set up similar to ?xposure aquaria, received a 3.5-cm layer of washed

beach sand instead of sediment. The control allowed us to monitor the

condition of organisms from the original test stock and also served to

detect potential problems related to changes in quality ef incoming

seawater.

Each aquarium received 20 sandworms, 12 clams, and 100 grass

shrimp. In addition to the organic material brought in with the

incoming seaw3ter, animals 'ere routinely fed a flake food (Tetra SM-80

Tetra Werke, West Germany) at a rate estimated to be two percent of

body weight per day. Organisms were collected and analyzed for
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whole-body concentrations of PCBs, Hg, and Cd on days 3, 7, 10, 17, 24,

38, 58, and 100. At each sampling interval, triplicate analyses were

conducted for each species (N=3) except shrimp; on day lOu grass shrimp

were not analyzed due to insufficient numbers. Animals were placed in

uncontaminated flowing seawater for 24 hours prior to preparation for

analyses to purge residual sediment from the intestinal tract. Organic

content (by combustion at 550* C) and moisture content were measured

for each sediment type at the beginning and end of the experiment.

Incoming seawater was monitored weekly for contaminants.

Dredged material, like natural sediment, is subject to periodic

reru-pension due to a variety of physical and biological processes

(e.g., tidal scour, bioturbatlon, etc.). To simulate resuspension in

the test aquaria, we utilized a suspended-sediment dosing apparatus

(Rubinstein et al., 1980) (Fig. 1). For this study we delivered a

suspended-solids load of 100 mg/L (dry weight) for each sedlme-it type

at six-hour intervals. Sediments rem.ined in suspension for

approximately 20 minutes before settling or being slowly flushed out of

the aquaria. Preliminary tests conducted with dye markers indicated

complete mixing of incoming water with no stratification.

D. Chemical Analyses

Polychlorinated biphenyls. Polytron homogenizers (PCU-2 Brinkman

Instruments) were used to extract tissue samples by grinding with

acetonitrile. Tissue samples (50% tissue in distilled water, w/w) of 1

to 4 g in 25-num x 150-nun screw-cap culture tubes were homogenized four
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times with 5 inx of acetonitrile for 15 to 30 seconds. After each

homogenization, the samples were centrifuged and the supernate

c4ecanted. Acetonitrile extracts (20 mt) were combined with 75 mt of 2%

Na2 SO4 , then extracted twice with 10 mt hexane, The samples were

shaken by hand for 1 minute and the phases were allowed to separate

(any emulsions were broken by sonicating the samples as necessary).

The hexane layer was transfered to 25-. concentrator tubes and -

concentrated, using a gentle stream of nitrogen to reduce the volume to

0.1 - 0.5 mt. The concentrate was then transferred to a Florisil

column for cleanup.

PCBs were extracted from sediments by the Soxhlet method of Bellar I
et al. (1980). Extracts were treated with mercury to remove sulfur and

transferred to a Florisil column to remove other organic contaminants.

Kontes Chromoflex columns (9 mm) with a small glass wool plug in

the tip were packed with 5 mt of Florisil and topped with about 25 mm

of anhydrous Na2 SO4 . Florisil, Na2 SO4 , and glass wool were

stored in an oven at 1300 C. The Florisil column was packed just

before use, allowed to cool, and moistened with 10 mt of hexane. When

the hexane reached the top of the Na2 SO4 , sample extracts were

layered on the column along with two 0.5-me hexanie rinses of the sample

container. The PCBs were then eluted with 10 mt of hexane, followed by

10 mt of 1% methanol in hexane. The eluate was collected, concentrated

to a volume of 0.5 to 1.0 rni, and diluted for analysis by gas

chromatography.
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The sediments contained considerable amounts of sulfur, which can

interfere with the chromatography of early eluting peaks. All sedimert

sample extracts were treated to remove the sulfur by addition of 0.2 to

1 mi of elemental mercury after the sample had been passed through

Florisil and concentrated to a volume of 0.5 to 1.0 mi. The sample was

then shaken until all the sulfur had reacted. More mercury was added

when needed. The sulfur-free samples were then diluted and analyzed by

gas chromatography.

All gas chromatography was carried jut on a Hewlett-Packard 5840A

gas chromatograph with linear electron-capture detector operated at

3000 C and a 1.8-m-long glass column (2 imn ID x 6 mm OD) packed with 5%

OVI01 on Gas Chrom W-HP 80/100 mesh maintained at 200* C. Injection

temperature was 225°C. Carrier gas was 10% methane in argon; the flow

rate was 30 mt/min.

PCB quantification was done by the method of Webb and McCall

(1973). The reference standards, obtained from the Food and Drug

Administration, Washington, U. C., were described by Sawyer (1978).

Only Aruclor 1242 and 1254 mixtures were quantified. Recoveries from

spiked samples ranged from 80 to 90%. Values presented in this report

were not corrected for percentage recovery.

Mercury and cadmium. One gram of tissue homogenate in water (from

Polytron homogenizer) was weighed into a 40-mt reaction vessel. Five

milliliters of concentrated nitric acid was added and the sample predi-

gested for 2 to 4 hours at 700 C. Reaction vessels were capped and
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digestion continued 48 hours at 700 C. Following digestion, samples

were transferred to 25-mi volumetric flasks and diluted to 25 mx with

I% HCL. Dibasic ammonium phosphate (0.25 mt) was added to prevent a

matrix effect. The sample was divided for Hg and Cd analyses. Metals

analysis was conducted with a Perkin Elmer atomic absorption

spectrophotometer (Models 503 and 403). Mercury was measured by cold

vapor atomic absorption techniques and cadmium by the heated graphite

atomizer method. Atomic absorption operating parameters were in

accordance with procedures described in "Methods for Chemical Analysis

of Water and Wastes" (EPA, 1979). Mercury and cadmium in sediments

were measured by the procedure also described in "Methods for Chemical

Analysis of Water and Wastes" (EPA, 1979).

III. RESULTS AND DISCUSSION

Sediment values for contaminant concentration, PCB elutriate

concentration, particle size, distribution percentage moisture, and

organic content measured prior to testing are summarized in Table 1.

Three of the four sediments were distinctly different in sediment

characteristics; however, sediments B and D were similar in all but Cd

concentrations. Whole-body residues of PCBs, Hg, and Cd are shown in

Table 2.

None of the sediments (A-D) were acutely toxic to test species.

Mortality throughout 100 days of exposure did not exceed 10% for any of

the species tested. Of the three contaminants monitored for uptake,

only PCBs a-cumulated above background (control) concentration.
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Results of PCB, Hg, and Cd uptake by the test organisms exposed to

sediments A-D are shown in Appendix A; mean whole-body concentrations

and replicate concentrations with standard deviation are illustrated.

A. PCB Uptake

Exposure to sediments B, C, and D resulted in similar PCB

whole-body residues within each species; sediment A consistently

produced lower PCB body burdens. Small increases in PCB concentrations

relative to controls (p < 0.05) were detected in M. mercenaria and P.

pugio, whereas higher concentrations were measured in N. virens (Fig.

2-4).

The sandworm is an errantiate species that forages interstitially

and on the substrate surface, feeding on detritus and organically rich

sediments. Although M. mercenaria is a burrowing bivalve, it is a

suspension feeder and relies on the overlying water column for

nutrition and respiration. Palaemonetes ui_.o lives in close

association with aquatic plants and occasionally browses on the

substrate surface; however, it is more representative of the water

column habitat. The grass shrimp and clam are primarily susceptible to

water-mediated uptake, whereas the sandworm is subject to uptake via

interstitial wa,.r, ingestion, and absorption from sediments.

Therefore, it is not surprising to find the greatest PCB uptake in the

pol ychaete.
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A nonlinear regression program was used to fit the three-parameter

uptake model of Bahner and Oglesby (1981):

P1

I + P 2 (t-P 3 )

for PCB accumulation by N. virens from sediments A-0: where y is the

dependLnt variable expressed as the natural log of the residue x 103

and t is the independent variable expressed in days. Based on this

model, the following bioaccumulation factors (BAF)

BAF = Tissue Concentration (wet wt)
Sediment Concentration (wet wt) (2)

Lwere calculated for N. virens at steady-state: sediment A, 0.53;

sediment B, 1.06; sediment C, 0.15; and sediment D, 1.59 (Fig. 5).

Previous studies concerning PCB uptake from sediments by

polychaetes (McLeese et al., 1980; Fowler et al., 1978; Courtney and

Langston, 1978) reported BAFs of 3 to 10 for Nereis sp. exposed to

sedim.ents freMy sorbed with PCIs. A possible explanation for the

lower BAFs we calculated is that our test material (recently collected

from the field) consisted of fine-grained highly organic sediments.

The organic content and particle size of the sediments were not

reported in the earlier studies. Wildish et al. (1980) noted that

organic contaminant flux between sediment and water depends upon

adsorption-desorption phenomena that are influenced by the physical and

chemical characteristics of the sediment. It is possible that the

quantity and quality of the organic load associated with sediment is a

key factor affecting the biological availability of associated

xenobiotics. Sediment C contained the highest concentration of PCBs,
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I
* (Table 1). Sediment A, high in organic content, also produced a low

BAr in the polychaete; sediments B and 0, which were similar in

sediment characteristics, produced higher BAFs. Measured BAFs for N.

virens (N-3) on day 100 were inversely related to the organic content

of the sediments. Figure 6 depicts the linear regression (R2 =0.76)

for BAF on percentage organics of sediments A-D.

The only comparison that can be made between 10-day and steady-

state whole-body residues is with PCBs in N. virens. Concentrations

measured on day 10 were from 33 to 45% of the 100-day concentrations.

Although there is no clear relationship between whole-body

concentration in a 10-day exposure period and steady-state

concentrations, by day 10, uptake of PCBs from sediments B, C, and D

was apparent. As Bryan (1979) states, "The rate at which accumulation

occurs in an organism depends not only on the availability of the

pollutant but also on a whole range of biological, chemical and

environmental factors." Equilibrium concentration in an organism is

governed by its ability to excrete the contaminant or, alternatively,

to stcre it. Therefore, it is possible in some situations that an

equilibrium. may never be attained. Nereis virens, however, did

demonstrate steady-state for PCBs by approximately day 30 for sediments

A and B and day 40 for sediments C and D (Fig. 5).

Our results indicate that a 10-day exposure period underestimates

steady-state concentration of PCBs accumulated from sediments by N.

virens. Although 10 days of exposure is sufficient to detect the

13
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potential for PCB accumuldtion, it does not reflect actual steady-state

concentration and therefore cannot be compared directly to a value

intended to represent concentrations in indigenous biota at the

disposal site.

To assess the relative contribution of water-mediated uptake of

PCBs by N. virens, we conducted elutriate analysis of sediments A

through D (Table ). The elutriate concentration represents the

maximum water exposure concentration for each sediment type. Based nn

these concentrations and a bioconcentration factor (BCF)

BCF = Tissue Concentration
Water Concentration (3)

of 800 for PCB uptake by Nereis sp. from water, calculated by Fowler et

al. (1978), we would expect maximum whole-body residues of 0.007 to

0.034 ug PCB/g (wet wt.) if accumulation were dependent solely on

direct partitioning from water. However, measured PCB whole-body

residues on day 100 ranged from 0.14 ug/g (sediment A) to 0.63 pq/g

(sediment D). Therefore, it appears that pathways in addition to

direct uptake from water (e.g., ingestion and sorption) substantially

contribute to PCB accum'ulation by the sandworm.

B. Mercury and Cadmium Uptake

Mercury and cadmium are both known to accumulate in a wide variety

of marine biota (Eisler, 1981); however, factors that affect

bioavailability of heavy metals from sediments are not well understood

(Pequegnat, 1979). Gross (1972) found that only small amounts of the

metals in dredged material dumped into the New York Bight could be
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leached out with hydroctoric acid and concluded that most of the metal

was not available to marine biota.

In our study, exposure to sediments that contained as much as 34

-ug Hg/g and 38 ug Cd/g (sediment C) did not produce measureable uptake

by test organisT~s (Ir,-3s. 7 and 8) relative to controls. There was no

' / apparent correlation between sediment type, contaminant concentration,

and measured body burdens of Hg and Cd byff. virens (Figs. 9 and 10),

"M. mercenaria (Figs. 11 and 12), and P. pugio (Figs. 13 and 14).

Studies conduioted by Sunda et al. (1978), Engel et al. (1981), and

Cunningham (1979) demonstrate that toxicity and bioavailability

of heavy metals are greatly influenced by their chemical form.

Accumulition, in part, is a function of the free metal ion

rincentraticn, which is directly affected by the total dissolved

concentration and the "degree of metal complexation to both organic and

inorganic ligands" (Engel et al., 1931). As noted previously, the

sediments examined in our study were highly organic and thus could

account for the lack of bioavailability of heavy metals, as evidenced

by lack of bloaccumulation. in addition, the sediments contained

considerable amounts of sulfur, and the formation of metal sulfides

"could also account for the low availability of Cd and Hg.

IV. CONCLUSIONS

In the past, attempts have been made to use bulk chemical analysis

to determine the potential impact of contaminated sediments on the

marine environment. Results from our study support the contention that
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sediment concentration alone does not reflect bioavailability. The

most highly contaminated sediment (C) produced the lowest PCB

bloaccumulation factor and did not result in measurable uptake of Hg

and Cd. Results also indicate that elutriate analysis alone does not

accurately predict PCB bioaccumulation by N. virens.

Exposure concentrations resulting from ocean disposal of

contaminated sediments appear to be related to the physical ind

chemical properties of the sediment as well as site-specific conditions

(i.e., receiving water quality and local hydrography).

Therefore, future research should examine the relationship between

physicochemical sediment parameters and biological effects, as well as

the relative potential for bioaccumulatior' in a wide variety of benthic

species which represents a range of trophic levels and feeding modes.

Until we can further our understanding of those processes affecting

bioavailability of contaminants in bottom sediment, empirical

measurement of body b"urduen bioassays and field monitoring)

remains the most direct method for determining bioaccumulation

potential for dredged material.
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APPENDIX A: ACCUMULATION OF PCBS, MERCURY,
AND CADMIUM BY TEST SPECIES.

Note: The legend for the symbols used in the figures is:

* Replicate body burdels

x Mean whole-body residue

a Standard deviation

The data are for whole-body residues (N=3) on a wet weight basis.
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Figure A16. Mercury uptake by N. virens from Sediment D.
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Figure A19. Mercury uptake by M. mercenaria from Sediment C.
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Figure A20. Mercury uptake by M. mercenaria from Sediment D.
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Figure A26. Cadmium uptake by N. virens from Sediment B.
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Figure A27. Cadmium uptake by N. virens from Sediment C.
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Figure A31. Cadmium uptake by M. mercenaria from Sediment C.
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Figure A33. Cadmium uptake by P. pugio from Sediment A.
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Figure A34. Cadmium uptake by P. pugio from Sediment B.
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Figure A35. Cadmium uptake by P. pugio from Sediment C.
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